5th TLEP Workshop

July 25-26, Fermilab

Top precision measurements at LC -

Theory improvements

Markus Schulze

Top quark physics at TLEP

- TLEP at *E*=350 GeV gives us the opportunity to study ttbar production around its threshold.
- The high luminosity and the clean experimental environment at TLEP promise a high precision top quark physics program.
- High precision might be a next logical step if no striking discoveries show up at the LHC, or if a discovery requires further scrutiny.
- Of course, this has to be seen in perspecive with prospects for ILC/CLIC and the LHC. First studies indicate that TLEP performance is competitive.
 + It offers a long term vision for HEP in Europe.

Outline

• Threshold scan

ttbar cross section
Top quark mass, width

• Top quark couplings

Electroweak couplings
Yukawa coupling
Rare decays, FCNC, single top

• Light stops

Threshold scan

- The Rydberg binding energy of toponium $\sim m_t \alpha_s^2 \approx 2~{\rm GeV}$ is similar to the top quark width $\Gamma_t \approx 1.5~{\rm GeV}$, both of which are much larger than $\Lambda_{\rm QCD}$.
- → Two opposite effects govern the top quark threshold region:
 - The QCD interaction between the non-relativistic top quarks pulls towards Coulomb-like toponium bound states.
 - The large top quark width $\Gamma_t \gg \Lambda_{\rm QCD}$ leads to a rapid decay before a bound state can be formed.

Threshold scan

- The resonance peak is smeared out.
- The large decay width effectively serves as a cut-off for non-perturbative effects → cross section can be described within perturbation theory.
- The slow velocity close to threshold requires a pert. expansion in α_s^n/v^m \rightarrow NRQCD with QCD Coulomb potential.
- → This allows a reliable description of the threshold region which is based entirely on first principles.

Threshold scan

- The resonance cross section $\sigma_{\rm res} \sim \alpha_s^3/(m_t\Gamma_t)$ is very sensitive to strong coupling, top quark mass and width.
- Higgs boson exchange introduces dependence on y_t through loops.
- → To what precision can we predict threshold dynamics? What is the expected experimental sensitivity?

- Description pushed to NNLO by several groups:
 [Hoang, Beneke, Melnikov, Nagano, Ota, Penin, Pivovarov, Signer, Smirnov, Sumino, Teubner, Yakovlev, Yelkhovsky]
- Corrections are large, scale variation bands do not overlap residual scale uncertainty ~ 20 %
 - \rightarrow partly contributed to Renormalon contribution of top quark pole mass, logs of largly different scales (E_t v_t m_t)

• More appropriate "short-distance" definitions of top quark mass such as MSbar or threshold mass improve convergence:

• Logarithmic resummation: $R = v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \sum_{j} (\alpha_s \ln v)^j \times \left[1 + \{\alpha_s, v\} + \{\alpha_s^2, \alpha_s v, v^2\} + \dots\right]$

[Stewart]

- Ultimately, for a rigorous quantitative analysis of threshold production the complete N³LO corrections are required.
- Significant progress towards this goal in recent years. We can expect the full result in the near future.

[Anzei, Beneke, Hoang, Kiyo, Kniehl, Marquard, Penin, Piclum, Schuller, Seidel, Smirnov, Steinhauser, Sumino]

 \rightarrow The N³LO uncertainty on total cross section is likely of order 3%.

- Ultimately, for a rigorous quantitative analysis of threshold production the complete N³LO corrections are required.
- Significant progress towards this goal in recent years. We can expect the full result in the near future.

[Anzei, Beneke, Hoang, Kiyo, Kniehl, Marquard, Penin, Piclum, Schuller, Seidel, Smirnov, Steinhauser, Sumino]

- \rightarrow The N³LO uncertainty on total cross section is likely of order 3%.
- At this level of precision one needs to account for
 - 1
 - electroweak corrections [Grzadkowski, Kuhn, Krawczyk, Stuart], [Hoang, Reisser]
 - mixed QCD-el.weak corrections [Eiras, Steinhauser], [Kiyo, Seidel, Steinhauser]
- finite width effects, non-factorizable corrections [Hoang, Reisser, Femenia]

N³QCD relation for resonance energy and m_t:

[Penin, Steinhauser] [Kiyo, Sumino]

$$\sqrt{s_{\text{res}}} = \left[1.9833 + 0.007 \frac{m_t - 174.3 \text{ GeV}}{174.3 \text{ GeV}} \pm 0.0009 \right] \times m_t,$$

- \rightarrow Theoretical uncertainty of 80 MeV on m_t (pole mass)
- → The use of the short-distance MSbar mass reduces uncertainty to 40 MeV.

Realistic studies need to include beam and detector effects, ISR, backgrounds,...

[Martinez, Miquel]:

Multi-parameter fits to the $t\bar{t}$ threshold observables at a future e^+e^- linear collider

(Standard reference for a realistic study)

Use NNLO simulation and include detector effects, selection efficiency and backgrounds, assuming the TESLA beam and detector design.

- → The simulations show an estimated experimental error of about 3% on the total cross section (much below the one of the differential observables).
- \rightarrow The resulting uncertainty on $m_{\rm t}$ is 31 MeV (from multiparam. fit of 3 observables). Neglecting uncertainties from beam energy and luminosity spectrum.

[Martinez, Miquel]:

Multi-parameter fits to the $t\bar{t}$ threshold observables at a future e^+e^- linear collider

(Standard reference for a realistic study)

[Gournaris]: Similar study for ILC including beam and luminosity uncertainties

 \rightarrow In summary, for a 300 fb⁻¹ threshold scan the total expected uncertainty on m_t is 100 MeV, resulting from the sum in quadrature of the following contributions:

31 MeV ([Martinez, Miquel]),

35 MeV (beam energy),

50 MeV (luminosity spectrum) and

80 MeV (from the conversion of s_{res} into m_t).

Above threshold: the top quark mass

$\delta m_{\rm t}$ = 100 MeV in perspective:

• LHC projections: [Snowmass]

	Projections					Projections		Projections					
CM Energy	14 TeV			14 TeV		14 TeV		33 TeV	$100~{ m TeV}$				
Luminosity	100	fb^{-1}	300	fb^{-1}	$3000fb^{-1}$	$100fb^{-1}$	$300fb^{-1}$	$3000 fb^{-1}$	$100fb^{-1}$	$300 fb^{-1}$	$3000fb^{-1}$	$3000 fb^{-1}$	$3000 fb^{-1}$
Syst. (GeV)	0.7	0.7	0.6	0.6	0.6	1.0	0.7	0.5	1.5	1.5	1.0	1.0	0.6
Stat. (GeV)	0.04	0.04	0.03	0.03	0.01	0.10	0.05	0.02	1.8	1.0	0.3	0.1	0.1
Total, GeV	0.7	0.7	0.6	0.6	0.6	1.0	0.7	0.5	2.3	1.8	1.1	1.0	0.6
	libelibes and mostly and a second sec												
likelihood methods				kinem. end-points		J/Psi method							

• ILC/CLIC projections: [Seidel,Simon,Tesar]

channel	m_{top}	$\Delta m_{ m top}$	σ_{top}	$\Delta \sigma_{\text{top}}$
fully-hadronic	174.049	0.099	1.47	0.27
semi-leptonic	174.293	0.137	1.70	0.40
combined	174.133	0.080	1.55	0.22

Table 2 Results summary for the top mass measurement at 500 GeV for an integrated luminosity of 100 fb⁻¹. All numbers are given in units of GeV, Errors are statistical only.

Threshold scan: top quark width

• Accuracy of 2% on top quark width is achievable

Top quark couplings

Top quark electroweak couplings

- Currently, these couplings are not very well measured (apart from Q_t). At hadron colliders only accessible through ttb+ γ and ttb+Z. At Tevatron, a handful of ttb+ γ events. Indirect constraints from CLEO,LEP on ttbZ. \rightarrow Ultimate precision at the LHC (3000 fb-1): 10-20% [Baur,Juste,Orr,Rainwater]
- In e+e- collisions, the cross section has an entangled dependence on photon and Z coupling. Polarized beams and FB asymmetries can be used to get a handle on individual couplings. [ILC TDR], [Devetak,Nomerotski,Peskin]

→ ILC precision with 500 fb⁻¹: **sub percent level** (80:30% polarization)

[Baur et al.], [Snowmass reports]

- At TLEP, only vector part accessible (axial couplings require p-wave)
 - → no sensitivity to electric dipole moments most likely compatible with ILC precision (higher lumi but no polarization)

Top quark Yukawa coupling

$$e^+e^- \to t\bar{t} + H$$

•
$$E_{\text{thresh}} = 2*m_{\text{t}} + m_{\text{H}} = 470 \text{ GeV}$$

→ large gain from increased CM energy $\sigma(800 \text{ GeV})/\sigma(500 \text{ GeV}) \sim 7$

$$\sqrt{s} = 500 \text{ GeV}, \ \mathcal{L} = 1000 \text{fb}^{-1}: \ \delta y_t / y_t \approx 10\%$$

$$\sqrt{s} = 800 \text{ GeV}, \ \mathcal{L} = 1000 \text{fb}^{-1}: \ \delta y_t / y_t \approx 6 \ \%$$

[Dawson, Juste, Reina, Wackeroth]

[Yonamine, Ikematsu, Tanabe, Fujii, Kiyo, Sumino, Yokoya]

• At the LHC, difficult final state with huge background. Still, 15-20 % precision seems possible. [CMS-N

[CMS-NOTE-2012-006], [ATLAS-PHYS-PUB-2012-004] _{16/23}

Threshold scan: Top quark Yukawa coupling

• At TLEP energies, sensitivity only through loop effects

- LO (1-loop) shift: +6% (for $M_{\rm H}$ = 120 GeV) [Grzadkowski, Kuhn, Krawczyk, Stuart]
- NLO el.weak+QCD (2-loop): +9% [Eiras, Steinhauser]
- SM+SUSY NLO corrections: ~ 1% (almost complete screening of SM effect)

[Kiyo, Steinhauser, Zerf]

Top quark Yukawa coupling

- A measurement is challenging but not impossible
- Under optimistic assumptions: 30% accuracy is possible

Rare top quark decays

Rare top quark decays: FCNC

$$e^+e^- \to t\bar{t} \xrightarrow{\text{FCNC}} (Z/\gamma/g/h + j)(Wb)$$

Process	SM [67]	2HDM(FV) [67, 68]	2HDM(FC) [69]	MSSM [70]	RPV [71, 72]	RS [73, 74]
$t \to Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}	50 50 50 50 50 50 50 50 50 50 50 50 50 5	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	Grand State of the Control of the Co	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$
	South book bond bond processor south processor processor of					

[Snowmass white paper]

- FCNC top quark decays are highly suppressed in the SM (light quark masses and small CKM angle)
- New Physics models introduce significantly higher rates
- → Any measured deviation from zero indicates NP in the top quark decay

19/23

Rare decays: FCNC

LHC projections:

Process	Br Limit	Search	Dataset
$t \to Zq$	$2.2 imes 10^{-4}$	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$300 \; {\rm fb^{-1}}, 14 \; {\rm TeV}$
$t\to Zq$	$7 imes 10^{-5}$	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to \gamma q$	2.5×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gu$	4×10^{-6}	ATLAS $qg \to t \to Wb$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gu$	1×10^{-6}	ATLAS $qg \to t \to Wb$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gc$	1×10^{-5}	ATLAS $qg \to t \to Wb$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to gc$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	$2 imes 10^{-3}$	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \ell\ell qX$	$3000~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$300~{\rm fb^{-1}},14~{\rm TeV}$
$t \to hq$	2×10^{-4}	LHC $t\bar{t} \to Wb + hq \to \ell\nu b + \gamma\gamma q$	$3000~{\rm fb^{-1}},14~{\rm TeV}$

[Snowmass white paper]

	Process	Br Limit	Search	Dataset
ILC			T. C. T.	
projections:	$t \to Zq$	$1.6(1.7) \times 10^{-3}$	ILC $t\bar{t}$, γ_{μ} $(\sigma_{\mu\nu})$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$
	$t o \gamma q$	1.0×10^{-4}	ILC $t\bar{t}$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$

- Limits from 500 fb⁻¹ ILC and 3000 fb⁻¹ LHC are compatible
- Expect TLEP to perform even better, given the higher luminosity

Rare decays: single top

$$e^+e^- \xrightarrow{\text{anomal.}} tq$$

• Studies are possible at *E*=250 GeV (maximal cross section) and at *E*=500 GeV (lower background)

[Aguilar-Saavedra, Riemann] [Snowmass white paper]

Process	Br Limit	Search	Dataset
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, γ_{μ} ($\sigma_{\mu\nu}$)	$500 \; {\rm fb^{-1}}, \; 250 \; {\rm GeV}$
$t \to Zq$	$1.5(1.1) \times 10^{-4(-5)}$	ILC single top, γ_{μ} $(\sigma_{\mu\nu})$	$500 \; \mathrm{fb^{-1}}, 500 \; \mathrm{GeV}$
$t \to \gamma q$	6×10^{-5}	ILC single top	$500 \; \mathrm{fb^{-1}}, \; 250 \; \mathrm{GeV}$
$t \to \gamma q$	6.4×10^{-6}	ILC single top	$500~{\rm fb^{-1}},500~{\rm GeV}$

- Possibly stronger limits than from top quark pair production
- Opportunities below ttb threshold (*E*=240..250 GeV) are not well studied (above results rely on extrapolations)

Light stops

New Physics at around 350 GeV: light stops

- Heavy stop quark scenarios are mostly covered by LHC searches
- Light stops and compressed spectra are difficult, even for HL-LHC
- At lepton colliders: $e^+e^- \to \tilde{t}_1 \, \tilde{t}_1^* \to c \tilde{\chi}_1^0 \, \bar{c} \tilde{\chi}_1^0$.

[Carena, Finch, Freitas, Milstene, Nowak, Sopczak]
[Freitas, Milstene, Schmitt, Sopczak]
[Bartl, Eberl, Kraml, Majerottom, Porod, Spoczak]
[...many others...]

New Physics at around 350 GeV: light stops

m_z [GeV] ATLAS Preliminary 600 1L ATLAS-CONF-2013-037 1L [1208.2590] Observed limits 2LATLAS-CONE-2013-065 2L [1209.4186] 500 Observed limits (-1σ_{theo}) --- Expected limits 2L [1208.4305], 1-2L [1209.2102] CDF 2.6 fb⁻¹ [1203.4171] 1L ATLAS-CONF-2013-037 400 1-2L, $\tilde{t}_1 \rightarrow \tilde{b} \tilde{\chi}^{\pm}$, $\tilde{m}_1 = 2 \times m_0$ $\widetilde{t}_1 \! \to b \; \widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle \pm}, \widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle \pm} \! \to W^{(^\star)} \, \widetilde{\chi}_{\scriptscriptstyle 4}^{\scriptscriptstyle 0}$ 300 200 100 200 300 400 500 600 200 300 400 500 600 m_{ř.} [GeV]

500 GeV ILC: [Carena, Finch, Freitas, Milstene, Nowak, Sopczak]

7+8 TeV LHC: [ATLAS at EPS 2013]

New Physics at around 350 GeV: light stops

500 GeV ILC: [Carena, Finch, Freitas, Milstene, Nowak, Sopczak]

7+8 TeV LHC: [ATLAS at EPS 2013]

SUMMARY: Top quark physics at LC

- Future NNNLO results will most likely reduce the theoretical uncertainty of the threshold cross section to ~ 3%.
- This level of accuracy is mandatory for precision top physics at threshold. It translates into an accuracy of 40-80 MeV on the top quark mass and about 2% on the top quark width.
- Realistic simulations incl. detector and beam effects, background,... do not compromise these conclusions.
- Precision on top quark electroweak couplings can be improved by an order of magnitude wrt. to LHC studies.
- Better than 20% accuracy on top quark Yukawa coupling is only possible at LC with $E \ge 500$ GeV.
- New Physics coupling to top quarks can be discovered in FCNC of the top quark decay and in single top processes.

Realistic studies using TLEP energies and beam parameter

- This level of accuracy is mandatory for precision top physics at threshold. It translates into an accuracy of 40-80 MeV on the top quark mass and about 2% on the top quark width.
- Realistic simulations incl. detector and beam effects, background,...
 do not compromise these conclusions.
- Precision on top quark electroweak couplings can be improved by an order of magnitude wrt. to LHC studies.
- Better than 20% accuracy on top quark Yukawa coupling is only possible at LC with $E \ge 500$ GeV.
- New Physics coupling to top quarks can be discovered in FCNC of the top quark decay and in single top processes.

Realistic studies using TLEP energies and beam parameter

• This level of accuracy is mandatory for precision top physics at threshold. It translates into an accuracy of 40-80 MeV on the

Comparison of ILC and TLEP projections

- Realistic simulations incl. detector and beam effects, background,...
 do not compromise these conclusions.
- Precision on top quark electroweak couplings can be improved by an order of magnitude wrt. to LHC studies.
- Better than 20% accuracy on top quark Yukawa coupling is only possible at LC with $E \ge 500$ GeV.
- New Physics coupling to top quarks can be discovered in FCNC of the top quark decay and in single top processes.

Realistic studies using TLEP energies and beam parameter

• This level of accuracy is mandatory for precision top physics at threshold. It translates into an accuracy of 40-80 MeV on the

Comparison of ILC and TLEP projections

- Realistic simulations incl. detector and beam effects, background,...
 do not compromise these conclusions.
- Pr What is the actual accuracy at TLEP? proved by an order of magnitude wrt. to LHC studies.
- Better than 20% accuracy on top quark Yukawa coupling is only possible at LC with $E \ge 500$ GeV.
- New Physics coupling to top quarks can be discovered in FCNC of the top quark decay and in single top processes.

Realistic studies using TLEP energies and beam parameter

 This level of accuracy is mandatory for precision top physics at threshold. It translates into an accuracy of 40-80 MeV on the

Comparison of ILC and TLEP projections

- Realistic simulations incl. detector and beam effects, background,...
 do not compromise these conclusions.
- Pr What is the actual accuracy at TLEP? proved by an order of magnitude wrt. to LHC studies.
- Bett TLEP allows studies of ttbar at 350 GeV sonly
 poss and single top at 250GeV!
- New Physics coupling to top quarks can be discovered in FCNC of the top quark decay and in single top processes.

Simulation tools

MC tools for threshold production beyond LO:

TOPPIK NNLO QCD [Hoang, Teubner]

ttbarMC NNLO QCD (based on TOPPIK) [Gournaris]

CALVIN: e+ e- → stops (NLO SUSY QCD + coulomb corrections) [Eberl, Bartl, Majerotto]

Extras

coupling	LHC, 300 fb^{-1}	$e^{+}e^{-}$ [19]
$\Delta \widetilde{F}_{1V}^{\gamma}$	$^{+0.043}_{-0.041}$	$^{+0.047}_{-0.047}$, 200 fb ⁻¹
$\Delta \widetilde{F}_{1A}^{\gamma}$	$^{+0.051}_{-0.048}$	$^{+0.011}_{-0.011}$, 100 fb ⁻¹
$\Delta \widetilde{F}_{2V}^{\gamma}$	$^{+0.038}_{-0.035}$	$^{+0.038}_{-0.038}$, 200 fb ⁻¹
$\Delta \widetilde{F}_{2A}^{\gamma}$	$^{+0.16}_{-0.17}$	$^{+0.014}_{-0.014}$, 100 fb ⁻¹
$\Delta \widetilde{F}_{1V}^Z$	$^{+0.43}_{-0.83}$	$^{+0.012}_{-0.012}$, 200 fb ⁻¹
$\Delta \widetilde{F}^Z_{1A}$	$^{+0.14}_{-0.14}$	$^{+0.013}_{-0.013}$, 100 fb ⁻¹
$\Delta \widetilde{F}^Z_{2V}$	$^{+0.38}_{-0.50}$	$^{+0.009}_{-0.009}$, 200 fb ⁻¹
$\Delta \widetilde{F}_{2A}^{Z}$	$^{+0.50}_{-0.51}$	$^{+0.052}_{-0.052}$, 100 fb ⁻¹

[American LC Working group] [Baur,Juste,Orr,Rainwater]

Extras

$$e^+e^- \to t\bar{t}$$

[Devetak, Nomerotski, Peskin] (2011)

Study A_{FB} with polarized beams to determine t-tb-Z couplings

- 1% precision on A_{FB} is achievable in fully hadr. channel (requires two b-tags + b charge tagging)
- polarized beams at CM energy of 500 GeV and 500 fb⁻¹:

$$\delta F_{
m L}^Z pprox 6\% \qquad \delta F_{
m R}^Z pprox 12\%$$

[Alan Blondel, snowmass talk]

[Alan Blondel, snowmass talk]

Extras

List of Known Corrections

- QCD Source of large theory uncertainty even today(NNNLO)
 - NNLO TopWGR(2000); Hoang-Teubner, Melnikov-Yelkhovsky, Penin-Pipovarov, Beneke-Signer-Smirnov, Yakovlev, Nagano-Ota-Sumino
 - NNNLO'/NNLL' Beneke-YK-Penin-Schuller(2008), Maquard-Piclum-Seidel-Steinhauser(2006)/Hoang-Manohar-Stewart-Teubner(2001), Pineda-Signer(2006)
- EW
 - EW 1-loop Grzadkowski-Kuhn-Krawczyk-Stuart(1987), Hoang-Reisser(2006)
 - Higgs/Z-gluon 2-loop Eiras-Steinhauser(2006)
 - W-gluon 2-loop vertex YK-Seidel-Steinhauser(2008)
 - unstable top effect(t -> bW)
 _{Hoang-Reisser-Femenia(2010)}
- Susy/THDM
 - 1-loop

 Hollik-Schappacher(1999), Su-Wise(2001), YK-Steinhauser-Zerf(2009)

 /Denner-Guth-Kuhn(1992)

[Talk from Kiyo]